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Abstract

A full-wave mode-matching analysis of a
unilateral finline with finite conductivity, metali-
zation thickness, and holding grooves is pre-
sented. A new class of metal modes exist in the
metalized region for its most part and decay
sharply in the air region. It is shown for the first
time that without incorporating the metal modes
presented here, the mode-matching method for
tackling lossy millimeter-wave or microwave
transmission lines can not produce accurate
results.

I. Introduction

The analysis of conductor losses on
integrated millimeter-wave and microwave trans-
mission lines plays an important role on the accu-
rate CAD (computer aided design ) modeling
required in many demanding applications. Re-
cently, a few methods have been developed for
this account, e.g. a combined surface integral solu-
tion [1], a modified mode matching method [2],
and a phenomenological loss equivalence method

[3]-

In Fig. 1 a unilateral finline is placed in a
waveguide housing with holding grooves. In this
case the integral equation method is often not
easy to derive. Alternatively, the mode-matching
method for treating this problem is adopted here
for analyzing a transmission line with finite met-
alization thickness [2,4,5].

The success of the mode-matching
method lies primarily on the eigenfunctions
obtained accurately. Apart from the numerical
treatment on obtaining accurate eigenfunctions as
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Fig. 1 A unilateral finline with finite conductivity,
metalization thickness, and holding grooves.

The structural parameters are

¢=0.275mm, d=1.275mm, b=1.55mm,
g,=8,=0.326mm, 0=3.333x10’(0chm-m),
h,=1.5mm, h,=0.05mm, t=1.pm, h,=1.549mm,
6=6,=€=1, ¢,=3,and ¢,,=¢,,=1-jolwe,

explained in [2], the mode completeness is para-
mountly important. In Fig. 1, the eigenvalues ob-
tained for regions 1, 2, and 4 are similar to those

“described in [5] except for region 3, where there exist

a new class of metal modes (eigenfunctions) in addi-
tion to the well-known air modes (eigenfunctions).
The negligence of the metal modes can cause inaccu-
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rate solutions for the complex propagation constant
when the metalizations in region 3 have finite
conductivities.

Section II discusses the mode-matching
method and certain important properties associated
with the metal or air modes. Section I gives a brief
description on the electromagnetic field distribu-
tions of the metal modes and air modes, respec-
tively. Section IV presents and discusses the theo-
retical results under many test conditions that
employ various numbers of metal modes.

I1. Formulation: Mode-Matching
Method

In Fig. 1, the finline structure is divided into
four regions. Regions 1 and 4, which are represented
by their relative dielectric constants as €, and ¢,
respectively, are the air region. Region 2 is for a
dielectric substrate with relative dielectric constant
¢,. The metalized strips are in the regions denoted
by ¢;, and ¢;, , and ¢, equals to 1 for the air-filled slot
region. g, and g, are the intrusion depths of the sub-
strate into the waveguide housing.

The mode-matching formulation based on
the TE-to-x and TM-to-x eigenfunction expansions
for all regions is derived. As an example, the
eigenfunction expansions in region 3 in terms of the
TM-to-x and TE-to-x fields can be listed as,
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where N3 denotes the numbers of eigenfunctions for
TM-to-x and TE-to-x ficlds, respectively. It is noted

that the summation in Eq. (1) starts from n=0in
order to include the quasi-TEM mode. In the case of
finite conductivities at regions denoted by ¢,; and ¢,
, we tend to obtain more eigenvalues than usual as
compared to other regions which have the similar
form as nn/b in region 1.

The side walls of the waveguide housing are
assumed to be perfect electric conductors. The coef-
ficients A ¢, B " (region 1), C 5, D 5, C*, D P (region
2),E ¢, F 5, E " F " (region 3), etc., can be elimi-
nated by matching all the necessary tangential
boundary conditions at each interface. It should be
noted that in the region with lossy conductors, it is
desirable to invoke the bi-orthogonal set of
eigenfunctions in order to simplify the analysis.
Finally a determinantal equation is obtained to
determine the propagation constant, y= a+jg (the
elwt vz factor is assumed. ), of the waveguide struc-
ture.

III. The Metal Modes and Air Modes

The existence of the air and metal modes
can be best understood by extending region 3 in
both positive and negative y directions. In this way,
the finline reduces to a parallel-plate waveguide,
which has two vertical perfectly conducting side-
walls. The new waveguide is now inserted with two
layers of metals with finite conductivities and an air

1.0}F o \n=0
A n=2
0.0 z d X
~n=1
~n=3
-1.0+

Fig. 2 The first few TM-to-x air modes,
0=3.333x10°(ohm-m).
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region between the metal layers. The complete
modal description of this particular case is illus-
trated in Figs. 2 and 3. Fig. 2 is the plots of the first
few air modes whereas Fig. 3 plots the first few
metal modes. Both air and metal modes have TE-to-
x and TM-to-x modes, respectively. Here only TM
type is presented. The TE type can be obtained in a
similar way. Thus N3 in Eq. (1) (Eq. (2)) is the sum
of the numbers of TM-to-x (TE-to-x) air modes (a)
and TM-to-x (TE-to-x) metal modes (m) on the
opposite sides of the air region, i.e. N3=a+2m for
the symmetric case. The existence of the metal
modes in addition to the air modes does not change
the formulation described in section II. It consti-
tutes, however, the mode completeness required in
the mode-matching method.

1.0
n=1
L/n=3
0.0 d X
<«—n=2
-1.0+

Fig. 3 The first few TM-to-x metal modes in the
region denoted by €,,, 0=3.333x10" (chm-m)*

IV. Theoretical Results

To analyze a lossless finline in [5] for any
modal solution, including the dominant or complex
modes, it was found that the relative convergence
criterion should be met in any slot-dieletric or slot-
air interfaces for good accuracy. In the present study
for a lossy finline shown in Fig.1, we denote N1, N2,
N3(N3=a+2m), and N4 as the numbers of expan-
sion terms in the constitutive regions, respectively.
The theorectical results reported herein are re-
quired to satisfy the condition of relative conver-
gence[5,6] by using the number of expansion terms
according to the aspect ratios of the finline struc-
ture. For the particular case with its structural
parameters listed in Fig. 1, the aspect ratios of

N1:N2:a:N4 equal to 8:11:5:8. This allows good field
matching at locations other than the lossy slot
region,

Now we investigate the convergence
property at the lossy slot region i.e. region 3. The
number of metal modes(m) is increased to investi-
gate the error of field matching as described in
Table I, which uses N2=110 for the operating fre-
quency at 65 GHz. It is clear from Table I that, by
increasing the number of metal modes, better field
matchings are obtained at all interfaces. For the
particular case studied, the value of m of 45 is suffi-
cient to yield very good field matching at all inter-
faces.

Next a sequence of convergence study for
the dispersive characteristics of the dominant mode
is performed and illustrated in Fig. 4 with the ratio
of m to N2 equal to 45/110. When not including any
metal mode, i.e. m=0, the value of g/g, disagrees
with the lossless data and the value of a, the loss
term in the propagation constant, is two orders of
magnitude smaller than those incorporating metal
modes.

Fig. 4 shows that the normalized g/g, is in-
sensitive to the variation of the size of matrices if

TABLE [

COMPARISON OF PARAMETERS OBTAINED BY
VARIOUS NUMBERS OF METAL MODES

m=0 | m=15 | m=30 | m=45| m=60

B/8s

0.71592 | 0.77322 0.78151 | 0.79255 0.79267

0(dB/mm) | 0.00016] 0.00708] 0.00273] 0.01946 | 0.01630

A" y=hyh,

y=h, |0.00577) 0.00709| 0.00734 | 0.00757| 0.00786

0.16426 | 0.31259 | 0.17078 | 0.03B12 | 0.03651

y=hiht 4 1,39927 | 0.62723 | 0.08638 | 0.00220] 0.00268

Define the error of field matching at each interface as
A= NIEx(yY) - By )iax
VJIEx(y 17 dx
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both relative convergence and metal modes are
properly accounted for. When these criteria are sat-
isfied, the solutions for both g/, and o converge to
their respective limiting values, as the number of
expansion terms is increased. It is interesting to see
that the value of the normalized propagation
constant(g/g,) for the lossy finline is slightly higher
than the lossless case. In particular, in the high fre-
quency limit, about 1.3% deviation may occur.
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Fig. 4 Dispersive characteristics of the dominat
mode for a symmetric unilateral finline with its
structural and material parameters listed in Fig. 1.

V. Conclusion

Full-wave theoretical results for a gold-
plated unilateral finline are presented. The relative
convergence criterion for a lossless waveguide is
also observed for the finline with good metal coat-
ing. A criterion is given in order to determine the
relative numbers of air and metal modes needed in
the mode-matching formulation.

o (dB/mm)

Of more importance is the fact that there
exist the so-called metal modes in each metalized
region with finite conductivity. For the particular
case studied, the omission of the metal modes results
in an inaccurate propagation constant, of which the
attenuation constant can be two orders of magnitude
smaller, as compared to that obtained by including
the metal modes.
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